Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(19): e202319919, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38299773

ABSTRACT

Despite considerable emphasis on advancing artificial ion channels, progress is constrained by the limited availability of small molecules with the necessary attributes of self-assembly and ion selectivity. In this study, a library of small molecules based on 5-haloisophthalamide and a non-halogenated isophthalamide were examined for their ion transport properties across the lipid bilayer membranes, and the finding demonstrates that the di-hexyl-substituted 5-iodoisophthalamide derivative exhibits the highest level of activity. Furthermore, it was established that the highest active compound facilitates the selective chloride transport that occurs via an antiport-mediated mechanism. The crystal structure of the compound unveils a distinctive self-assembly of molecules, forming a zig-zag channel pore that is well-suited for the permeation of anions. Planar bilayer conductance measurements proved the formation of chloride selective channels. A molecular dynamics simulation study, relying on the self-assembled component derived from the crystal structure, affirmed the paramount significance of intermolecular hydrogen bonding in the formation of supramolecular barrel-rosette structures that span the bilayer. Furthermore, it was demonstrated that the transport of chloride across the lipid bilayer membrane is facilitated by the synergistic effects of halogen bonding and hydrogen bonding within the channel.

2.
ACS Infect Dis ; 10(2): 371-376, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38262044

ABSTRACT

The development of potent antibacterial agents has become increasingly difficult as bacteria continue to evolve and develop resistance to antibiotics. It is therefore imperative to find effective antimicrobial agents that can address the evolving challenges posed by infectious diseases and antimicrobial resistance. Using artificial transmembrane ion transporters is an emerging and promising avenue to address this issue. We report pyridyl-linked hetero hydrazones as highly efficient transmembrane HCl symporters. These compounds offer an appropriate HCl binding site through cooperative protonation, followed by recognition of chloride ions. HCl transport by these compounds inhibits the growth of different Gram-negative bacterial strains with high efficacy by affecting the cell envelope homeostasis. This specific class of compounds holds substantial promise in the ongoing pursuit of developing highly efficient antibacterial agents.


Subject(s)
Anti-Infective Agents , Symporters , Hydrazones/pharmacology , Chlorides , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology
3.
Angew Chem Int Ed Engl ; 62(46): e202313712, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37732556

ABSTRACT

The structural tropology and functions of natural cation-anion symporting channels have been continuously investigated due to their crucial role in regulating various physiological functions. To understand the physiological functions of the natural symporter channels, it is vital to develop small-molecule-based biomimicking systems that can provide mechanistic insights into the ion-binding sites and the ion-translocation pathways. Herein, we report a series of bis((R)-(-)-mandelic acid)-linked 3,5-diaminobenzoic acid based self-assembled ion channels with distinctive ion transport ability. Ion transport experiment across the lipid bilayer membrane revealed that compound 1 b exhibits the highest transport activity among the series, and it has interesting selective co-transporting functions, i.e., facilitates K+ /ClO4 - symport. Electrophysiology experiments confirmed the formation of supramolecular ion channels with an average diameter of 6.2±1 Šand single channel conductance of 57.3±1.9 pS. Selectivity studies of channel 1 b in a bilayer lipid membrane demonstrated a permeability ratio of P C l - / P K + = 0 . 053 ± 0 . 02 ${{P}_{{Cl}^{-}}/{P}_{{K}^{+}}=0.053\pm 0.02}$ , P C l O 4 - / P C l - = 2 . 1 ± 0 . 5 ${{P}_{{ClO}_{4}^{-}}/{P}_{{Cl}^{-}}=2.1\pm 0.5}$ , and P K + / P N a + = 1 . 5 ± 1 , ${{P}_{{K}^{+}}/{P}_{{Na}^{+}}=1.5\pm 1,}$ indicating the higher selectivity of the channel towards KClO4 over KCl salt. A hexameric assembly of a trimeric rosette of 1 b was subjected to molecular dynamics simulations with different salts to understand the supramolecular channel formation and ion selectivity pattern.

4.
Chem Sci ; 14(33): 8897-8904, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37621434

ABSTRACT

Artificial biomimetic chloride anionophores have shown promising applications as anticancer scaffolds. Importantly, stimuli-responsive chloride transporters that can be selectively activated inside the cancer cells to avoid undesired toxicity to normal, healthy cells are very rare. Particularly, light-responsive systems promise better applicability for photodynamic therapy because of their spatiotemporal controllability, low toxicity, and high tunability. Here, in this work, we report o-nitrobenzyl-linked, benzimidazole-based singly and doubly protected photocaged protransporters 2a, 2b, 3a, and 3b, respectively, and benzimidazole-2-amine-based active transporters 1a-1d. Among the active compounds, trifluoromethyl-based anionophore 1a showed efficient ion transport activity (EC50 = 1.2 ± 0.2 µM). Detailed mechanistic studies revealed Cl-/NO3- antiport as the main ion transport process. Interestingly, double protection with photocages was found to be necessary to achieve the complete "OFF-state" that could be activated by external light. The procarriers were eventually activated inside the MCF-7 cancer cells to induce phototoxic cell death.

5.
J Pharm Biomed Anal ; 235: 115605, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37531734

ABSTRACT

Ion channels and transporters play key roles in various biological processes, including cell proliferation and programmed cell death. Recently, we reported that 2,4-dinitrobenzene-sulfonyl-protected N1,N3-dihexy-2-hydroxyisophthalamide (1) forms ion channels upon activation by glutathione (GSH) and results in the induction of apoptosis by depleting the intracellular GSH reservoir in cancer cells. However, the detailed molecular events leading to the induction of apoptosis by these synthetic transport systems in cancer cells still need to be uncovered. Along these lines, we investigated the alterations in cellular metabolites and the associated metabolic pathways by performing untargeted global metabolic profiling of breast cancer cells - MCF-7 - using 1H NMR-based metabolomics. The evaluation of spectral profiles from MCF-7 cells exposed to 1 and their comparison with those corresponding to untreated (control) cells identified 14 significantly perturbed signature metabolites. These metabolites belonged mostly to antioxidant defence, energy metabolism, amino acid biosynthesis, and lipid metabolism pathways and included GSH, o-phosphocholine, malate, and aspartate, to name a few. These results would help us gain deeper insights into the molecular mechanism underlying 1-mediated cytotoxicity of MCF-7 cells and eventually help identify potential novel therapeutic targets for more effective cancer management.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Metabolomics/methods , MCF-7 Cells , Apoptosis , Glutathione/metabolism
6.
Chemistry ; 29(51): e202301412, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37345998

ABSTRACT

NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a detoxifying enzyme overexpressed in tumors, plays a key role in protecting cancer cells against oxidative stress and thus has been considered an attractive candidate for activating prodrug(s). Herein, we report the first use of NQO1 for the selective activation of 'protransporter' systems in cancer cells leading to the induction of apoptosis. Salicylamides, easily synthesizable small molecules, have been effectively used for efficient H+ /Cl- symport across lipid membranes. The ion transport activity of salicylamides was efficiently abated by caging the OH group with NQO1 activatable quinones via either ether or ester linkage. The release of active transporters, following the reduction of quinone caged 'protransporters' by NQO1, was verified. Both the transporters and protransporters exhibited significant toxicity towards the MCF-7 breast cancer line, mediated via the induction of oxidative stress, mitochondrial membrane depolarization, and lysosomal deacidification. Induction of cell death via intrinsic apoptotic pathway was verified by monitoring PARP1 cleavage.


Subject(s)
Breast Neoplasms , NAD , Humans , Female , NAD(P)H Dehydrogenase (Quinone)/metabolism , Benzoquinones , Quinones/metabolism
7.
Org Biomol Chem ; 21(16): 3323-3329, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37009856

ABSTRACT

The pyrrole-2-carboxamide moiety is well known for its presence in various natural products and its use in anion receptor systems. Here we assess the transmembrane anion transport activity of a series of substituted pyrrole-2-carboxamides and show them to be highly tuneable, versatile systems for anion transport by simple variations of pyrrole ring and amide substituents.

8.
J Am Chem Soc ; 145(17): 9737-9745, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37021819

ABSTRACT

Fluctuations in the intracellular chloride ion concentration, mediated by synthetic ion transporters, have been known to induce cytotoxicity in cells by disrupting ionic homeostasis. However, the activity of these transporters in modulating autophagy remains largely unexplored. Here, we report a benzoylbenzohydrazide (1c) that self-assembles to form a supramolecular nanochannel lumen that allows selective and efficient transport of chloride ions across the cell membranes, disrupts ion homeostasis, and thus leads to the induction of apoptosis in cancer cells. It is important to note that the transporter was relatively nontoxic to cells of noncancerous origin. 1c was also shown to induce the deacidification of lysosomes, thereby disrupting autophagy in cancer cells. Taken together, these findings provide a rare example of an artificial ion channel that specifically targets cancer cells by induction of apoptosis via disruption of autophagy.


Subject(s)
Chlorides , Neoplasms , Chlorides/metabolism , Apoptosis , Autophagy , Ion Channels/metabolism , Neoplasms/drug therapy
9.
Chem Commun (Camb) ; 59(24): 3602-3605, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36883913

ABSTRACT

Two self-assembled barrel-rosette ion channels have been developed using bis(1,3-propanediol)-linked m-dipropynylbenzene-based molecules. The system with an additional amide arm acted as a better channel compared to that having an ester arm. The amide-linked channel displayed substantial channel activity and excellent chloride selectivity in the lipid bilayer membranes. Molecular dynamics simulation studies confirmed efficient hydrogen-bonded self-assembly of the amide-linked bis(1,3-propanediol)-based molecules in the lipid bilayer membrane and the detection of chloride recognition in the cavity.

10.
Chem Commun (Camb) ; 59(14): 1917-1938, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36691926

ABSTRACT

The majority of cellular physiological processes depend on natural ion channels, which are pore-forming membrane-embedded proteins that let ions flow across the cell membranes selectively. This selective movement of ions across the membranes balances the osmolality within and outside the cell. However, mutations in the genes that encode essential membrane transport proteins or structural reorganisation of these proteins can cause life-threatening diseases like cystic fibrosis. Artificial ion transport systems have opened up a way to replace dysfunctional natural ion channels to cure such diseases through channel replacement therapy. Moreover, recent research has also demonstrated the ability of these systems to kill cancer cells, reigniting interest in the field among scientists. Our contributions to the recent progress in the design and development of artificial chloride ion transporters and their effect on biological systems have been discussed in this review. This review would provide current vistas and future directions toward the development of novel ion transporters with improved biocompatibility and desired anti-cancer properties. Additionally, it strongly emphasises stimuli-responsive ion transport systems, which are crucial for obtaining target-specificity and may speed up the application of these systems in clinical therapeutics.


Subject(s)
Ion Channels , Ion Channels/metabolism , Ion Transport , Cell Membrane/metabolism
11.
Chemistry ; 29(10): e202202887, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36399427

ABSTRACT

Artificial channels capable of facilitating the transport of Cl- ions across cell membranes while being nontoxic to the cells are rare. Such synthetic ion channels can mimic the functions of membrane transport proteins and, therefore, have the potential to treat channelopathies by replacing defective ion channels. Here we report isophthalic acid-based structurally simple molecules 1 a and 2 a, which self-assemble to render supramolecular nanochannels that allow selective transport of Cl- ions. As evident from the single-crystal X-ray diffraction analysis, the self-assembly is governed by intermolecular hydrogen bonding and π-π stacking interactions. The MD simulation studies for both 1 a and 2 a confirmed the formation of stable Cl- channel assembly in the lipid membrane and Cl- transport through them. The MQAE assay showed the efficacy of the compounds in delivering Cl- ions into cells, and the MTT assays proved that the compounds are nontoxic to cells even at a concentration of 100 µM.


Subject(s)
Chloride Channels , Phthalic Acids , Ion Channels/chemistry , Epithelial Cells
12.
Nat Commun ; 13(1): 6507, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36316309

ABSTRACT

Stimulus-responsive reversible transformation between two structural conformers is an essential process in many biological systems. An example of such a process is the conversion of amyloid-ß peptide into ß-sheet-rich oligomers, which leads to the accumulation of insoluble amyloid in the brain, in Alzheimer's disease. To reverse this unique structural shift and prevent amyloid accumulation, ß-sheet breakers are used. Herein, we report a series of bis(indole)-based biofunctional molecules, which form a stable double helix structure in the solid and solution state. In presence of chloride anion, the double helical structure unwinds to form an anion-coordinated supramolecular polymeric channel, which in turn rewinds upon the addition of Ag+ salts. Moreover, the formation of the anion-induced supramolecular ion channel results in efficient ion transport across lipid bilayer membranes with excellent chloride selectivity. This work demonstrates anion-cation-assisted stimulus-responsive unwinding and rewinding of artificial double-helix systems, paving way for smart materials with better biomedical applications.


Subject(s)
Amyloid beta-Peptides , Chlorides , Amyloid beta-Peptides/metabolism , Lipid Bilayers/chemistry , Ion Channels/chemistry , Amyloid , Indoles
13.
Biochemistry ; 61(21): 2267-2279, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36219819

ABSTRACT

Establishing a potent scheme against α-synuclein aggregation involved in Parkinson's disease has been evaluated as a promising route to identify compounds that either inhibit or promote the aggregation process of α-synuclein. In the last two decades, this perspective has guided a dramatic increase in the efforts, focused on developing potent drugs either for retardation or promotion of the self-assembly process of α-synuclein. To address this issue, using a chemical kinetics platform, we developed a strategy that enabled a progressively detailed analysis of the molecular events leading to protein aggregation at the microscopic level in the presence of a recently synthesized 2-hydroxyisophthalamide class of small organic molecules based on their binding affinity. Furthermore, qualitatively, we have developed a strategy of disintegration of α-synuclein fibrils in the presence of these organic molecules. Finally, we have shown that these organic molecules effectively suppress the toxicity of α-synuclein oligomers in neuron cells.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/chemistry , Protein Aggregates , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Neurons/metabolism
14.
Chem Sci ; 13(33): 9614-9623, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36091906

ABSTRACT

Achieving superfast water transport by using synthetically designed molecular artifacts, which exclude salts and protons, is a challenging task in separation science today, as it requires the concomitant presence of a proper water-binding site and necessary selectivity filter for transporting water. Here, we demonstrate the water channel behavior of two configurationally different peptide diol isomers that mimic the natural water channel system, i.e., aquaporins. The solid-state morphology studies showed the formation of a self-assembled aggregated structure, and X-ray crystal structure analysis confirmed the formation of a nanotubular assembly that comprises two distinct water channels. The water permeabilities of all six compounds were evaluated and are found to transport water by excluding salts and protons with a water permeability rate of 5.05 × 108 water molecules per s per channel, which is around one order of magnitude less than the water permeability rate of aquaporins. MD simulation studies showed that the system forms a stable water channel inside the bilayer membrane under ambient conditions, with a 2 × 8 layered assembly, and efficiently transports water molecules by forming two distinct water arrays within the channel.

15.
Org Lett ; 24(23): 4124-4128, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35657329

ABSTRACT

Synthetic anion transmembrane transporters are adding new aspirations for treating channelopathies by replacing defective ion channels. The availability of such suitable candidates is still infrequent due to the associated toxicity. Here, we report 3-(1H-1,2,3-triazol-1-yl)benzamides as transmembrane anion carriers, nontoxic to cells. The selective and electrogenic chloride transport activity was established by fluorescence and ion selective electrode-based assays. MQAE assay confirmed the chloride uptake into the cells by the nontoxic compounds.


Subject(s)
Chlorides , Liposomes , Anions , Benzamides , Ion Transport
16.
Front Chem ; 10: 841159, 2022.
Article in English | MEDLINE | ID: mdl-35186887
17.
Org Biomol Chem ; 20(10): 2054-2058, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35179538

ABSTRACT

We report the development of supramolecular bis(cholyl) ion channels using oxalamide and hydrazide as selectivity filters. The hydrazide system showed superior chloride transport activity to oxalamide via the formation of a barrel stave channel. The better chloride recognition within the hydrazide channel over the oxalalmide channel was confirmed from the theoretical calculations.

18.
Chem Rec ; 22(2): e202100225, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34766703

ABSTRACT

Self-assembly has become a powerful tool for building various supramolecular architectures with applications in material science, environmental science, and chemical biology. One such area is the development of artificial transmembrane ion channels that mimic naturally occurring channel-forming proteins to unveil various structural and functional aspects of these complex biological systems, hoping to replace the defective protein channels with these synthetically accessible moieties. This account describes our recent approaches to construct supramolecular ion channels using synthetic molecules and their applications in medicinal chemistry.


Subject(s)
Ion Channels , Ion Channels/chemistry
19.
J Org Chem ; 87(1): 10-17, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34908424

ABSTRACT

A series of triazole-cyanostilbene receptors were designed and synthesized. The receptor binds with the anions through various CH···anion hydrogen bonding interactions, where strong binding was observed for SO42- anions followed by Cl-, Br-, NO3-, and I-, calculated from the 1H NMR titration experiment. The NOESY NMR experiment of the receptor confirmed the formation of anion-induced folded conformation. The CH···anion hydrogen bonding interaction-mediated anion recognition and foldamer formation were further confirmed from geometry optimization studies of the anion-bound complex. The receptor transports Cl- anions efficiently compared to SO42- anions across the lipid bilayer membrane via a mobile carrier mechanism.


Subject(s)
Hydrogen , Phospholipids , Anions , Hydrogen Bonding , Molecular Conformation
20.
Carbohydr Res ; 511: 108476, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34800752

ABSTRACT

A linear tetramer of ß-(1 â†’ 6)-linked 3-azido-3-deoxy-d-allose containing glycosyl donor and glycosyl acceptor functions in the terminal monosaccharide units was prepared starting from 3-azido-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-allofuranose. Cyclization of the linear tetramer under glycosylation conditions afforded the corresponding cyclic tetrasaccharide in 77% yield; its deprotection and reduction of the azido groups resulted in the formation of the cyclic tetramer of 3-amino-3-deoxy-d-allose with axial amino groups, a potential scaffold for the synthesis of tetravalent functional clusters.


Subject(s)
Oligosaccharides , Glycosylation
SELECTION OF CITATIONS
SEARCH DETAIL
...